Electron sources at ATF/LUCX facility of KEK Part-II

N. Terunuma, KEK, Japan

Indo-Japan School on Advance Accelerators for Ions and Electrons Inter University Accelerator Centre, New Delhi

16 February 2015

Part-II

focused on experiences of Cs₂Te photocathode at KEK

- preparation and transport
- experiences with the RF gun

Electron sources of the KEK Accelerators

Cs₂Te photocathode RF gun

- well established
- compact and longer lifetime

STF

L-band 1.3 GHz

ATF/LUCX S-band 2.8 GHz

cERL (500kV DC gun for CW) GaAs photocathode

KEKB

Thermionic Gun

SuperKEKB

Quasi traveling wave side coupled cavity gun advanced, under development

Electron source of ATF

RF gun: S-band 3.6 cell

Typical operation for ATF

- 5 MeV (limited by available RF power)
- 1~20 bunch/pulse (2.8 ns spacing)
- 1x10¹⁰ electrons/bunch
- 3 Hz repetition

Laser

- Nd:YAG: 266 nm
- 357 MHz
- 1 uJ/bunch
- 1~20 bunch by pockels cell

Cathode

Cs₂Te: QE ~1%

1.3 GeV S-band Electron LINAC (~70m)

Present merits of Cs₂Te photocathode

Photocathode	QE	
Pure Metals (Cu, Mg,)	10 ⁻⁵ ~ 10 ⁻⁴	 UV laser can handle in air back bombardment
Cs ₂ Te	10 ⁻² ~ 10 ⁻¹	 UHV is required, Oxidation UV laser is required longer lifetime well established
Multi-Alkaline CsKSb,	10 ⁻²	R&D phase attractive green laser response
Others,		

Higher intensity e- beam generation by a reasonable laser power

example for ATF: $2x10^{10} e^{-}$ /bunch = 1 % (QE) x 2 µJ/laser-pulse

QE (Quantum Efficiency)

= Number of electrons / Number of laser photons

Handling in vacuum

- Cs₂Te photocathode should be handled in UHV to keep QE.
- How good vacuum is required?
- ATF RF gun: 5x10⁻⁷ Pa
- QEs of early samples after the vacuum work were low even if the pressure reached nominal level.
- QEs of later samples, after several Cs₂Te preparations, become better and better. Pressure was not improved significantly.
- Oxidation of the Cs₂Te layer is a major candidate of degradation of QE.
- Vacuum quality, amount of oxygen, should be considered.

Vacuum pressure around the ATF 80MeV Injector

Handling in vacuum

Photocathode transport in vacuum

STF system

- continuous vacuum connection
- preparation system is just behind the RF gun

ATF system

- continuous vacuum connection, sectioned by valves, between Cs₂Te preparation and RF gun
- preparation system is far from the RF gun
- LUCX system

separated; cathode is transferred by in vacuum carrier

STF photocathode system

L-band RF Gun Cs₂Te Photocathode

- Evaporation system
 - similar method as ATF/LUCX
 - located behind the RF gun
- Cathode plug
 - Mo for cathode substrate
 - ceramic isolator
- Laser
 - Nd:YAG: 266 nm
 - 162.5 MHz, 1ms, 5 Hz
 - pulse width 12 ps
- Cathode
 - Cs₂Te QE: 0.2~0.5%

ATF Cs2Te photocathode preparation and load-lock system

Cs₂Te preparation

ATF Cathode Load-lock System

Transport the photocathode under UHV

Laser

Beam

UV light Q.E. measurement

Cleaning & Pickup

Storage

RFGU

Transport tools of cathode plug

Plug mount for vertical rods Up/down and rotation

Horizontal rod Rotate to lock the cathode plug

Horizontal Rod (Rotatable)

LUCX photocathode system

LUCX photocathode system

LUCX accelerator and cathode transport

How the photocathode attached on the RF gun? Example: First Cs₂Te RF Gun at KEK

Molybdenum substrate for Cs₂Te

Mo is used for the cathode substrate.

Cu was also tried for the commissioning of the first Cs_2 Te RF gun at KEK in 2002.

It shows **lower and unstable QE** compare to that of Molybdenum.

Mo plugs for Cs₂Te RF guns at KEK

- Mirror polished surface
- Ultrasonic cleaning by Ethanol/Acetone after the machining.
- No other chemical treatment is applied.
- Ar+ ion or heat cleaning

Copper plug

QE of the Cs₂Te photocathode on Cu

Cu-No.1

Cu-No.2

Vacuum pressure was not good at this commissioning stage but the later Mo sample showed 3% of QE under similar vacuum condition.

Molybdenum substrate for Cs₂Te

A di Bona et al., "Auger and X-ray photoemission spectroscopy study on Cs2Te photocathodes", J.Appl.Phys.80 No.5(1996)3024-3030

Auger analysis shows the ideal atomic fraction for Mo substrate. It will be a reason of the higher QE than Cu substrate.

Preparation of the Cs₂Te photocathode

Step 1: Surface cleaning

- Argon-ion sputtering is used for ATF to cleanup the substrate surface.
- No heat-cleanup because of the Be-Cu contact on plug.

Step 2: Tellurium layer formation

 Amount of Te is controlled by monitoring the thickness on the sensor located at the equivalent distance.

Step3 : Cesium deposition on Te layer

Amount of Cs is controlled by monitoring the quantum efficiency.

Step 1: Surface Cleaning before Cleaning before Cs₂Te formation

Te and Cs sources

- Select Te or Cs by moving up/down
- Short cyclic up/down to make a uniform evaporation.

Side view

- Put the cathode plug in the cathode holder.
- Mask with φ 10mm hole prevents the surface edge from the evaporation of Te and Cs.

Step 2: Tellurium layer formation

Te thickness dependence on QE

QE measured under the RF intervals

- QE was measured by several hours RF operations.
- Not enough samples indeed
- Results in 2003 showed better QE for the 3 nm sample.
- Sometimes Te-piece tipped in the filament bucket, then several 10 nm of Te was formed accidentally.
- Typical Te thickness for ATF operation is more than 10 nm but less than 100 nm.
 - It may be much safe for the RF breakdown in the Gun.

Step 3: Cs deposition on Te layer

Example of Cs heating

Cathode holder with Mask ø8mm

Cs Dispenser by SAES Getters Co.

- Control DC current on Cs dispenser.
- One-side evaporation; no thickness monitoring (at ATF)
- Amount of Cs deposition is determined by monitoring the running QE.

Measurement of QE

QE can be measured when a cathode plug is in the Cs₂Te preparation system.

- Quick measurement after RF operation
- No measurement is possible under a beam operation.
- Monochromator and Xe lamp \rightarrow 266 nm(laser)
- Measure the photo-emission current by monitoring the drop of voltage on the cathode.

Cs diffusion into the Te layer

- Slow deposition samples showed the smooth saturation curve on QE. It may suggest the well-formed and stable Cs₂Te layer.
- Fast deposition makes a Cs-rich surface at a moment and QE drops quickly. Then QE is recovered by following the diffusion of Cs into the Te layer.

Experience of the Cs₂Te photocathode with RF gun

- Quick QE degradation under the RF field was observed
- QE was measured as a function of RF exposure
- Stable QE about a few % was obtained
- Long-term experiences

Quantum efficiency under the RF field

- Initial QE was sufficiently high ~ 14 %.
- It drops quickly and reaches stable level when the RF is fed into the RF gun.
- All QE measurements were done by moving the photocathode from the RF gun to the Cs₂Te preparation chamber.

Quantum efficiency under the RF field

Wavelength dependence of QE for Samples exposed by RF

- **QE degradation: all wavelength**
- Peak shifts to shorter wavelength (higher energy)
- It may suggest the electron affinity of photocathode is changing.
- Not a physical damage?
- Oxidation by worse vacuum under RF?

Photocathode: Long-term examples

Two months history of the quantum efficiency under the ATF operation

Reforming the Cs₂Te on the used photocathode

Cleaning then forming the Cs₂Te

same as brand-new cathode as expected; QE more than 10%.

Forming the Cs₂Te without cleaning

a few samples after several-months operation were tried reforming without cleaning.

Case 1: both Te and Cs

QE was recovered but less than 10%; i.e., $0.4\% \rightarrow 6.7\%$. Case 2: Cs only not recovered well; QE $0.3\% \rightarrow 1.2\%$.

We did the cleaning in general but Cs only for sudden request of high intensity beam in the past.

Reforming the Cs₂Te on the used photocathode

More long-term (years) experience at ATF

• We have two long-term samples.

- a sample of two years operation
- a sample of three years operation (presently used)

Both of them shows the stable quantum efficiency more than 0.5% (likely ~1%).

Surface

• Dark current with Cs₂Te

Cathode surface after long-term operation

- A lot of small spots were observed.
- They were scattered over the plug surface.
- somehow much on the Cs₂Te area (??)
- ~1% of QE was confirmed with these spots
- We are not sure that spots are due to Cs₂Te because we have no longterm sample without Cs₂Te.

Summary

- Cs₂Te photocathode system at KEK are presented.
- More than 10 % of Quantum Efficiency (QE) is routinely achieved when Cs₂Te is formed.
- About 1 % of QE is usually realized through the RF gun operation.
- Good vacuum quality, less oxygen condition, is a key to realize and keep a higher QE.

Thank you for your attention!