Design of Electron Gun

Abhay Deshpande Scientist, Medical Electronics Division Society for Applied Microwave Electronics Engineering and Research SAMEER, IIT-B Campus, Powai Mumbai 400 076

abhay@sameer.gov.in

Introduction of SAMEER

- SAMEER stands for 'Society for Applied Microwave Electronics Engineering and Research' and is an off shoot of TIFR.
- SAMEER is a R&D laboratory of Ministry of Communication and Information Technology (formerly Department of Electronics) of Govt of India.
- We have 3 centers: Mumbai (head office), Chennai and Kolkata and 2 upcoming centers at Vishakhapatnam and Guwahati.
- Successfully established Linac Development for 6 and 15 MeV electron linac.
- We have made π/2 mode, Standing Wave Side Coupled Linac and developed a Radiation Oncology Unit using this Linac.

Linac parts

Linac cavity

6 MeV Linac

15 MeV Linac

SAMEER Linac

- Standing Wave, side coupled structure operating at $\pi/2$ mode
- Stable operation at various locations
- Proven technology with most things done at SAMEER

Parameter	Measured
Frequency, MHz	2997.65
Coupling, %	0.0278
Shunt Impedance, MΩ/m	87
Q (unloaded)	15000
VSWR	1.78
Energy, MeV	15
Input power, MW	6
Pulse width, μs	6

6 MeV Oncology system

Dual mode dual photon energy Oncology system

6
240 (flattened)
120 μA
Magnetron 2.6 MW
2%
±3%
Medical oxo cm to 35x35 cm

Modes	Photon	Electron
Energy	6, 15 MV	6,9,12,15,18 MeV
Dose rate	500 RMM	500 RMM
RF Power	Klystron 6 MW	
Flatness	< 3%	
Symmetry	± 3%	
Field size	Variable from oxo cm to 35x35 cm	
Source to iso- center distance	100 ± 0.5 cm	

30 MeV, 8-10 kW Linac

- 30 MeV, 8-10 kW electrons hit the Convertor target to produce X-rays
- The X-rays hit an enriched Mo-100 target and by (γ,n) reaction Mo-100 converts to Mo-99 which has 66 hrs half life
- We elute Tc-99m from Mo-99. Tc-99m has 6.6 hrs half life

Design of RF Gun

Electron Source	
RF Gun Basics	
Details of RF Gun	
Cavity for RF Gun	
KEK RF Gun	
Results of KEK Gun	
Plan for IUAC Gun	

- Basics of Electron Source
- **RF Gun basics**
- Details of RF photo cathode gun
- Cavity design for RF gun
- Fabrication of RF gun at KEK
- Experimental results of KEK gun
- Plan for IUAC RF gun
- Applications of RF Gun
 - Beam dynamics for RF gun

Basics of Electron Source

Electron	L
Source	

RF Gun Basics

Details of RF Gun

Cavity for RF Gun

KEK RF Gun

Results of KEK Gun

- Electron source or electron gun is a device which provides electrons for accelerators
- It essentially needs an electron generation mechanism and an extraction mechanism
- The generation could be thermionic, field emission or photo emission
- Extraction mechanism could be DC or RF

Electron Emission Mechanisms

Electron Source

RF Gun Basics

Details of RF Gun

Cavity for RF Gun

KEK RF Gun

Results of KEK Gun

- Thermal emission: When heated to high temperatures (1000 to 3000 °C), materials may emit electrons
- Field emission: Electron emission due to high fields on surface
- **Photo electric emission:** Electron emission from photo emitters when photons hit the surface

Thermionic Emission

Electron
Source

•

RF Gun Basics

Details of RF Gun

Cavity for RF Gun

KEK RF Gun

Results of KEK Gun

- An emitter like Tungsten is heated using a dc/ac voltage
- At T=0; electrons occupy states up to Fermi Energy E_f
- For T>0, electron distributions extends to higher energy
 - If the temperature is increased to say 1000 °C or above, electron acquire sufficient energy and escape outside.

Thermionic Emission

Richardson- Dushmann Equation governs the emission process

$$J = AT^2 e^{-\frac{\varphi}{kT}}$$

A is thermionic emission constant

Details of RF Gun

Electron

Source

RF Gun Basics

Cavity for RF Gun

where,

KEK RF Gun

Results of KEK Gun

Plan for IUAC Gun T is temperature in °K e is electronic charge =1.6x10⁻¹⁹ C m is electron mass =9.11x10⁻³¹ kg k_B is Boltzmann constant = 1.38 x 10⁻²³ (J/K)=8.6175x10⁻⁵ (eV/K) h is Planck's constant = 6.63 x 10⁻³⁴ (Js)

 $A = \frac{4\pi emk^2}{k^3} = 1.2 \times 10^6 [A/m^2 K^2]$

Thermionic Emission

Indo Japan School, IUAC, New Delhi

Field Emission

Electron Source	•	If la then
RF Gun		beco
Basics	•	Elec
Details of		emit
RF Gun	•	Sinc
Cavity for		heat
RF Gun		man
KEK RF		Emi
Gun		
Results of		
KEK GUN		
Plan for		
IUAC Gun		

- If large RF field is applied, then the potential barrier becomes thin
- Electrons may tunnel out and emit from the surface
 - Since there is no external heating is applied, hence it is many times referred as Cold Emission

Photo electron emission

Electron	
Source	

RF Gun Basics

Details of RF Gun

Cavity for RF Gun

KEK RF Gun

Results of KEK Gun

Plan for IUAC Gun • A photon strikes the surface of an emitter

- The photon excites the electrons to higher energy states
- If the excited energy is sufficiently high, the electrons can escape outside
- The resultant current is photo emission current
- Condition for emission
 hv > φ

Extraction mechanism

DC Thermionic Gun

Electron Source RF Gun	 Emission is Extraction i A Grid can
Details of RF Gun	
Cavity for RF Gun	$-\mathbf{v}$
KEK RF Gun	
Results of KEK Gun	
Plan for IUAC Gun	

- thermionic and hence continuous
- is by DC field

be used to control the emission

Configuration of thermionic gun

SAMEER Triode Gun

Cathodes

Electron	Material	φ (ev)	T _e (K)	
Source		W	4.5	2860
RF Gun Basics		Та	4.1	2680
Details of		Мо	4.2	2230
RF Gun	Cs	1.9	320	
Cavity for RF Gun		Th-W	2.6	1800
KEK RF Gun	BaO	1.0	1400	
	CeB ₆	2.5	1720	
Results of KEK Gun		LaB ₆	2.5	1400
Plan for		Dispenser	1.6	1100
IUAC Gun		s	Should	Higher
		b	be low	is good

Photo cathode gun

- Uses the principle of Photo emission
 - A laser of suitable wavelength hits a photo cathode and generates electron bunch
- The electrons are extracted using
 - DC potential: in case of DC photo cathode gun
 - High gradient RF field: in case of RF photo cathode gun

RF Photo cathode gun

Source **RF Gun Basics Details of RF Gun Cavity for RF Gun KEK RF** Gun **Results of KEK Gun Plan for IUAC Gun**

Electron

- A photo cathode is placed at the entrance of RF cavity.
- The laser hits the photo cathode and generates electron bunch, which is quickly accelerated using high gradient fields near the cathode.
- Such a electron bunch has very high space charge and the beam diverges quickly
- If high gradient, of say 120 MV/m is made at cathode, then bunch accelerates very fast and exits from RF gun at around 6 MeV energy with low emittance of around 2π -mm-mrad

Comparison between Thermionic and RF Gun

Electron Source			
RF Gun		Thermionic Gun	RF Gun
Basics	Type of emission	DC	Pulse
Details of RF Gun	Current	High average current possible	High peak current possible
Cavity for RF Gun	Post Buncher	Mandatory	Not needed
	Output energy	few tens of KeV	MeV
KEK RF	Emittance per nC	~ 10 -12 π-mm-mrad	<2 π-mm-mrad
Results of KEK Gun	Main usage	High current industrial, medical	Research accelerators
Plan for IUAC Gun			

Operation of RF Photo cathode gun

RF Gun Cavity

RF Gun Details

Electron Source	• The RF gun usually operates at π -mode.	
RF Gun Basics	 An incident laser pulse hits the photo cathode to produce an electron bunch. 	
Details of RF Gun	 If a 266 nm laser shines the surface of say Cs2Te photo cathode, electrons with ~ 4.66 eV energy are produced. 	
Cavity for RF Gun		
KEK RF Gun	 Lets say, we get 1 nC charge with a bunch length of 5 ps and and σ_y is nearly 300 µm. 	
Results of KEK Gun	• Due to space charge forces, the emittance of bunch degrades immediately as it enters inside the first cell.	
Plan for IUAC Gun	• The emittance is controlled by maintaining a very high gradient at the cathode plate. At KEK, we maintained 120 MV/m gradient at cathode.	

RF Gun Details

Brief summary of parameters of KEK RF Gun

Electron Source			
RF Gun Basics	Operating Frequency	2856	MHz
Details of	Mode of Operation	π	
RF Gun	Mode Separation	8.6	MHz
Cavity for RF Gun	Field Balance	1.0	
KEK RF Gun	Iris Diameter	28	mm
Results of KEK Gun			
Plan for IUAC Gun			

Ref: Abhay Deshpande, Junji Urakawa et al. NIM-A 600 (2009) 361-366

Brief summary of parameters

Electron Source	• Followi shunt iı		ped to maximize the
RF Gun Basics	The sepThe strι		ncreased up to 9 MHz sh code
Details of RF Gun	• CAD dr	•	ulations
Cavity for RF Gun			
KEK RF Gun	TIG)		
Results of KEK Gun	οr.¢		
Plan for IUAC Gun			
	F		

Rough Machining

Fabrication at various stages

Complete RF Gun

Fabrication history

Mode Frequency Measurements

Field Measurements

Low Power Measurements

Electron		Simulated	Measure	d		
Source	Frequency MHz	2855.64	2855.61			
RF Gun Basics	Mode Separation MHz	8.67	8.63			
	Field Balance	1.0	0.98			
Details of RF Gun	Q	18000	14,700			
Cavity for	Coupling β	1.0	1.03			
RF Gun				D	E Cup	0
KEK RF						Ų
Gun				BNL (c	original)	7900
Results of				LUCX	(Old)	7900
KEK Gun				ATF (modified)	12600
Plan for				BNL (r	nodified)	12780
IUAC Gun			L,	LUCX	(modified)	14,700
				LCLS (modified)	13,900

RF Processing

Electron Source

RF Gun Basics

Details of RF Gun

Cavity for RF Gun

KEK RF Gun

Results of KEK Gun

RF Processing

- The RF processing was carried out for 150 hrs at a pulse width of 2 µs and power of about 10 MW.
- Next, we coated the cathode with Cesium-Telluride (Cs₂Te) and conditioned the gun by operation for another 100 hrs.
- At 30 days after the coating, the quantum efficiency was found to be around 0.5% and the dark currents were substantially low.

Components for RF gun: Photocathode

Choice of Photocathode

Electron Source	Thermionic	Temperature k _B T (eV)	(K) Radius (mm)	Current Density (A/cm²)	Work Function(e	Thermal Er EV) (u/m	mittance/beam size nm (rms))
RF Gun Basics	CeB ₆	1723 0.1486	1.5	42	2.3	C	0.539
Details of							
RF Gun	Metal	λ (nm)	QE	Vacuum	Work	Thermal Emit	ttance/beam
Cavity for		E (eV)		(torr)	Function	siz	ze
RF Gun					(eV)	(μ/mm	(rms))
KEK RF						Calculated	Measured
Gun	Copper	250 , 4.96	1.4 x 10 ⁻⁴	10 ⁻⁹	4.6	0.5	1.0 ± 0.1
Results of	Mg	266, 4.66	6.4 x 10 ⁻⁴	10 ⁻¹⁰	3.6	0.8	0.4 ± 0.1
KEK Gun	Cs ₂ Te	211, 5.88	~ 0.1	10 ⁻⁹	3.5	1.2	0.5 ± 0.1
Plan for		264, 4.7				0.9	0.7 ± 0.1
TOAC Gull		262, 4.73				0.9	1.2 ± 0.1
	GaAs	532, 2.33	~ 0.1	?	1.4±0.1	0.8	0.44±0.01

Ref: D.H. Dowell et al., Nucl. Instr. and Methods in Phy. Res. A 528 (2004) 316.

17 Feb. 2015

Old LUCX

Electron Source

RF Gun Basics

Details of RF Gun

Cavity for RF Gun

KEK RF Gun

Results of KEK Gun

LUCX parameters

Electron	Energy	50	MeV (High)
Source		5	MeV (Low)
RF Gun Basics	Bunch Charge	0.5	nC (charge is variable)
Details of	Bunch Length	5.5	ps (rms)
KF Gun	Bunch spacing	2.8	ns
Cavity for			
RF Gun	Number of bunches	100 (High Energy)	
KEK RF		300 (Low Energy)	
Gun	Repetition rate	3.13 to 12.5	Hz
Results of KEK Gun	Normalized emittance	1.89± 0.1	π -mm-mrad (vertical)
Plan for IUAC Gun	Minimum beam size	50	μm (vertical)

Emittance measurement

Multi Bunch Beam

Multi Bunch Beam

Multi Bunch Beam

Input RF Power : 21MW Electron (96MV/m at the cathode) Source 4 12 Charge **RF Gun ∓**∎≣∙ 3.5 **Basics** Energy _ 10 **Details of** 3 Beam **RF Gun** Beam Charge [nC] 8 2.5 **Cavity for** Energy **RF Gun** 2 6 **KEK RF** 1.5 Gun IMev 4 **Results of KEK Gun** 2 0.5 Plan for **IUAC Gun** •• 0 n 20 60 80 100 120 140 40 -20 Phase [deg]

2 5 -- 11 DE -----

Indo Japan School, IUAC, New Delhi

Plan for IUAC- Phase 1

IUAC RF Gun

TITAODEO

Beam simulations: Single Bunch

Laser profile at Cathode

Electron	Input		
	Initial Energy	4.6	eV
Basics	Transverse Beam size (rms)	0.3	mm
Details of	Bunch length (rms)	50	fs
RF Gun	Charge	50	pC
Cavity for	Axial Field	120	MV/m
RF Gun	Solenoid Field	0.275	Т
KEK RF Gun		9	
Results of KEK Gun		s mem.	
Plan for IUAC Gun	90		
	-0.5 0 0.5	-0.1	0 0,1
	x mm Transverse	em Lo	Assion time ps ongitudinal

Beam size variation using ASTRA

Laser profile: Two bunch mode

Indo Japan School, IUAC, New Delhi

Beam profile: Two bunch mode

Beam profile: Two bunch mode

Source
RF Gun Basics
Details of RF Gun
Cavity for RF Gun
KEK RF Gun
Results of KEK Gun
Plan for IUAC Gun

Flootron

- Energy : 8.67 MeV
- Total charge: 50 pC
- Micro bunches: 02
- Bunch spacing: 500 fs
- Energy Spread: 0.89 % (σ)
 - Bunch length: 320 fs
 - Transverse Beam size: 0.61 mm (σ)
- Normalized emittance: 0.629 π-mm-mrad

Status of RF gun work

Electron Source	
RF Gun Basics	
Details of RF Gun	
Cavity for RF Gun	
KEK RF Gun	
Results of KEK Gun	
Plan for IUAC Gun	

- The base design is ready
- OFHC Copper shipment will come by May
- Alloys and other material purchased
- Jigs, Fixture design is on-going
- Trial machining will start very soon
- Plan to make one proto type gun this year
- Plan to initiate R&D for 1.3 GHz RF gun for IUAC Phase 2

Summary

Source
RF Gun Basics
Details of RF Gun
Cavity for RF Gun
KEK RF Gun
Results of KEK Gun
Plan for

Flootron

- RF gun is a very popular choice for low emittance beams
- With ease in machining and simple fabrication technique RF gun technology is adapted at many places
- Laser technology is getting advanced much faster. This gives many choices available to RF gun designers

IUAC Gun

Thank you

धन्यवाद !

ありがとうございます

Dr. Abhay Deshpande MED1, SAMEER IIT Campus, Powai Mumbai 400 076 Tel: 022-2572-7226 Email: <u>abhay@sameer.gov.in</u>

SAMEER Linac

Accelerating Structure at SAMEER

Linac Designed at SAMEER

Measured parameters for 15 MeV Linac

Parameter	Value		Unit
Energy	6	15	MeV
Frequency	2998	2998	MHz
Peak current	140	78	mA
Input Power	2.4	6	MW
Length of Tube	32	112	cms

Parameter	Simulated	Measured
π/2 frequency, MHz	2998	2999
Side to main coupling %	0.03	0.0267
Shunt impedance, MΩ/m	100	87
Q (unloaded)	16000	15000
VSWR	1.5	2.02

Experimental results

Linac Designed at SAMEER

Measured parameters for 15 MeV Linac

Parameter	Va	alue	Unit
Energy	6	15	MeV
Frequency	2998	2998	MHz
Peak current	140	78	mA
Input Power	2.4	6	MW
Length of	32	112	cms
Tube			

Parameter	Simulated	Measured
$\pi/2$ frequency, MHz	2998	2999
Side to main coupling %	0.03	0.0267
Shunt impedance, $M\Omega/m$	100	87
Q (unloaded)	16000	15000
VSWR	1.5	2.02

Parameter	Low	High
Energy (MeV)	6 MeV	16 MeV
Dose rate (Rads/min at 1 m)	300	4500
Peak current (mA)	120	80
Average current (µA)	120	80
Rep. rate (Hz)	250	166

Field Emission

Electron Source	• Fowler – Nordheim Equation governs the emission process and is given as:
RF Gun Basics	$e^{3}F^{2}$ $(4\sqrt{2m})^{3/2}$
Details of RF Gun	$J = \frac{1}{8\pi h\phi} \exp\left(\frac{1}{3heF}\phi^{7/2}\right)$
Cavity for RF Gun	where,
KEK RF Gun	F is the Surface field e is electronic charge =1.6x10 ⁻¹⁹ C
Results of KEK Gun	m is electron mass =9.11x10 ⁻³¹ kg k_ is Boltzmann constant = 1.38 x 10 ⁻²³ (I/K)=8.6175x1(
Plan for IUAC Gun	(eV/K) h is Planck's constant = 6.63×10^{-34} (Js)
Use of RF Gun	

Components for RF gun: Photocathode

Components for RF gun: Laser System

• Nd:YVO₄ laser will be used for RF photo cathode gun to generate electron bunches.

Seed Laser	Nd:YVO ₄ mode locked
Rep. rate	357MHz
Average Power	10 W
Wavelength of seed laser	1064 nm
Wavelength on photo cathode	266 nm
Pulse width	7 ps (rms)
Profile	Gaussian

PC: Pockels Cell AMP: Flash Lamp Amplifier FI: Faraday Isolator <u>BBO: Non linear optical crystal</u>

Parameters of RF gun Laser

Parameter	Value	Unit	Remark
Laser Pulse width	7.0	ps	rms
Wavelength	1064	nm	
Peak Power	10	W	Average
Repetition Rate	357	MHz	
Power per pulse before amplification	28	nJ per pulse	
Power after IR to UV conversion	2.8	nJ per pulse	10 % efficiency
Amplification	2000		
Power per pulse after amplification	5.6	mJ per pulse	
Wavelength after down conversion	266	nm	
Quantum efficiency of photo cathode	0.1	%	
Charger per bunch	1.2	nC	Full Shutter

Modulator

Klystron Parameters

Parameter	Value
Peak output power	6 MW
Drive power	200 W (max)
Voltage	132 kV
Current	93.6 A
Pulse width	8.5 μs (max)
Duty	0.00126 (max)

Modulator Parameters

Parameter	Design	Measured	
Peak Voltage	14 kV	13.5 kV	1
Peak current	1100A	1140A	LT
Pulse width	6.5 µs (max)	6.5 µs (max)	
PRF	200 Hz	200 Hz	
Pulse rise time	1 µs	1 µs	- /
29 Nov. 2014		National Workshop, L	JDP-MU

