

http://www.fair-center.de

Site update: 21.11.2014

Design of Beam Stoppers for Super-FRS in FAIR Project

Dr. Avik Chatterjee CSIR-CMERI

Super FRS and Beam Stopper Layout at FAIR site

Function

- To absorb high energy beams consisting of primary beam particles and unwanted secondary particles released by target material
- To shield the subsequent parts of the separator from high level of secondary radiation mainly fast neutrons.

Trajectories of primary beams for different B_ρ settings. Dump the beam only on dedicated beam catchers (BC)!

FAIR Input 2012 The red rays : possible separation scenarios for uranium beams The purple rays : lighter ions neutron-rich fragments.

Previous concept

Initial	Spot@	Thermal	BC	Min Spot	Critical for
Energy	target	power		area @BC	
740 MoV/n	Small	85 kW	BC2	35 mm^2	Effect of low thermal conductivity,
740 Mev/u	Sman	0.3 KVV	BC3	42 mm^2	localized Bragg peak
1500 MaV/2	See all	17 1-337	BC2	35 mm^2	Thermal load, spread Bragg's peak,
1500 MeV/u	Small	I7 KW	BC3	42 mm^2	quasi DC beam

3x10¹¹ ppp

Critical cases for slow extraction (quasi-DC)

50-100 ns pulses 5x10¹¹ ppp @ 1.67s

Critical cases for fast extraction

Initial	Spot@	Pulse	Thermal	BC	Min. spot	Critical for
Energy	target	energy	power		area @BC	
740 MeV/1	Lorge	14 b I	851W	BC2	127 mm^2	Pressure wave, due to
740 Mev/u	Large	14 KJ	0.J K W	BC3	340 mm^2	localized Bragg peak
				BC2	127 mm^2	Thermal load, spread
1500 MeV/u	Large	29 kJ	17 kW	BC3	340 mm ²	Bragg peak, high
						energy

How to use the same stopper for both the modes ?

Alternate concept: Rotating absorber Heat transfer by radiation only

Beam Spot sizes Vs Input Energy to Beam Stoppers

Energy distribution data with Bragg's peak in Fast Extraction

[i] 740 MeV/u, [ii] 1500 MeV/u

U²³⁸ ions pulses inside absorber (density Graphite : 1.84 g/cm3).

[i] 740 MeV/u

[ii] 1500 MeV/u

Charge state distribution U²³⁸ ions with Energy levels

Energy [MeV/u]	92+ [%]	91+[%]	90+ [%]	89+[%]	88+[%]
1500	77.7	20.8	1.5	< 0.01	
1000	58.0	35.9	6.1	< 0.1	
750	41.9	45.7	12.2	0.2	< 0.01
500	21.8	49.5	27.7	0.9	~0.01
250	4.0	30.6	59.7	5.5	0.2

Design of Beam Stoppers

Concept-2012

Beam Entry Section BC3

Considerations in Cavity design (For all BC1, BC2, BC3)

After first time installation no manual intervention in the system

Neither the system is directly accessible once assembled

Modular Design for removal, transport, disassembly and re-assembly in Hot cell by remote manipulation through limited access window

- Easy extraction and insertion of absorbers
- De-coupling of the cooling system and motion control system from the absorbers
- Easy extraction and insertion of the beam stopper unit into the vacuum chamber and its subsequent docking with the shielding iron plug.

Hot cell manipulation schematic : Germany and Sweden in Kind

Pressure Simulation Analysis code : <u>Molflow+</u>, A Monte-Carlo Simulator package [CERN].

SL	Description	Area [cm2]	Desorption Input Outgassing [mbar*1/s/cm2]	Input Net Outgassing [mar*l/s]	Outgassing [mbar*l/s]	Outgassing mbar*l/s (Molflow)
1	Chamber#1	117585.0	1.00E-10	NA	1.18E-05	1.18E-05
2	Plug#1	55458.2	1.00E-10	NA	5.55E-06	5.54E-06
3	Plug#2	55458.2	1.00E-10	NA	5.55E-06	5.54E-06
4	Duct#1	35879.2	1.00E-10	NA	3.59E-06	**
5	Duct#2	35879.2	1.00E-10	NA	3.59E-06	**
6	Motion_block#1	7800.0	1.82E-10	NA	1.42E-06	1.42E-06
7	Motion_block#2	7800.0	1.82E-10	NA	1.42E-06	1.42E-06
8	Absorber#1	8000.0	2.80E-08	NA	2.24E-04	**
9	Absorber#2	8000.0	2.80E-08	NA	2.24E-04	**
10	Entry (Pillow Seal)	1636.1	NA	2.00E-06	2.00E-06	2.00E-06
11	Exit	11105.4	1.80E-10	NA	2.00E-06	**
	Total Surf. Area	344601.3				

FOR BC3MOD3.GEO7Z FILE

12	Duct#3	19723	1.00E-10	NA	1.97E-06	1.97E-06	12
							12

Pressure Simulation

Analysis code : <u>Molflow+</u>, A Monte-Carlo Simulator package [CERN].

bc3_mod2.geo7z

1.00e-8

1.00e-7

1.00e-6

1.00e-10

1.00e-9

bc3_mod3.geo7z

13

Pressure Simulation

Analysis code : <u>Molflow+</u>, A Monte-Carlo Simulator package [CERN].

Graphite out gassing with temperature : Absorber outgassing 1.2 E-7 mbar.l/s/cm2 [JM Jimenez, CERN, 2003], [Tsai et al. 2005] [Lahiri et al. 2013]

At 400 °C, 600 °C, and 1200 °C, sudden outgassing bursts.

Can be controlled by prior degassing of the graphite at 970 °C

Average outgassing has been reported 1.1-1.2 E-7 mbar.l/s/cm² (800 °C - 900 °C)

Steady state will occur after settling down

bc3_mod1.geo7z design option has been selected for BC3

BC3 Absorber Design

Staggered Catcher for both slow and fast extraction (Current Concept) 15

BC3 Absorber Design : Open and Close conditions

2.7 deg inclination to interrupt the beam

Motion control along X and Y for switching between

Open and Close conditions Fast and Slow Extraction

Fast extraction causes:

- Instantaneous temperature rise (50-100 ns)
- Origin and propagation of compressive pressure wave
- **Reflection at boundary resulting tensile wave front**
- Limits given by yield strength (?) and spall strength
- **W**Transient shock parameter and irradiation effects becomes primary factors

50-100 ns pulses 5x10¹¹ ppp @ 1.67s : 14kJ (740MeV/u) and 29kJ (1500MeV/u)

- □ Temperature rise, melting, property change, evaporation
- □ Thermal stresses, deformations, failure
- Shock wave propagation spalling

BC3 Absorber Design : Fast Extraction Pressure pulse and shockwave Initial GSI report :

With 10¹³ ²³⁸U ions/cm² (Low Energy in existing SIS18 facility) Increased Young's modulus - Good Lower thermal conductivity (~8 W/mK) - Worst !! Lattice shift / Dislocation - Bad Swelling (1-3%) - Bad

~M. Tomut , H. Weick : Report PHN-NUSTAR-FRS-23- 2011

Radiation damage, STM image U beam on graphite M. Tomut

BC3 Absorber Design : Fast Extraction

BC3 Absorber Design : Fast Extraction : Thermal Analysis

Solving thermal equilibrium problem considering average heat transfer coefficients h_{av} at top and bottom and neglecting radiation

Estimation of h_{av:} due to convective heat loss for a fully developed flow with no entrance and exit effects.

Cooling Channel dia = 14mm	[a] Dittus –Bolter Empirical Correlation	Ţ _{inf} =293K (30ºC)
Area (A _p) = 1.54x 10 ⁻⁴ m ²	$\overline{N}_{afd} = 0.023 \times R_e^{0.8} \times P_r^{0.3} = 60.46$	ρ = 995.7Kg/m ⁻³
U _m = 0.54m/s (q/60*A _p)	[b] Sieder – Tate Empirical Correlation gives	$C_p = 4176 J/Kg/K$
$B_{eD} = \rho U_m D / \mu ~ 10000$	$\overline{N}_{ugd} = 0.027 \times R_e^{0.8} P_r^{0.3} \left(\frac{\mu_0}{\mu_0}\right)^{0.14} = 69.93$	K = 0.615W/m/K
P _r = μ Cp/ K = 5.4	[c] Molki & Sparrow correlation correction for short tubes.	μ x 10 ⁶ = 792.4 N-s/m ²
	$\overline{N}_{\mu} = 1 + \alpha \left(\frac{L}{2}\right)^{2}$ where $\alpha = \left(\frac{24}{2}\right)$ and $b = 2.08 \times 10^{-6} R = 0.815$	v x 10 ⁶ = 0.805 N-s/m2
	$\overline{\overline{N}_{ufd}} = 1 + u(\overline{D}) \text{where} u = \left(\frac{\overline{R_e}^{0.23}}{R_e}\right) \text{ and } b = 2.08 \times 10^{-10} R_e = 0.015$	q = 5 lit/min.
	$\overline{N}_{u} = \frac{\overline{h}_{c}D}{K} \implies \overline{h}_{c} = \frac{\overline{N}_{u}K}{D} = \frac{86.82 \times 0.615}{0.014} = 3814 \text{ W/m}^2\text{K}$	

BC3 Absorber Design : Fast Extraction : Thermal Analysis

Forced Convection Tarbulent Fully Developed flow

For both uniform and pulsed energy deposition, Temperature stabilizes after h_{av} in the range of 2000 -5000 W/m²K

Flement		Max temp (TD material)				
cizo	h_convection	Unifrom	100ms	1ms		
5120			pulse*	pulse*		
10	400	3610	3250	3188		
10	1000	2758	2695	2629		
10	2000	2381	2362	2349		
10	3000	2234	2205	2189		
10	4000	2156	2140	2123		
10	5000	2108	2104	2080		
10	5800	2081				

Example:-

 $\overline{N}_{u} = 86.82$

 $\overline{N}_{u} = \frac{\overline{h}_{c}D}{K} \implies \overline{h}_{c} = \frac{\overline{N}_{u}K}{D} = \frac{86.82 \times 0.615}{0.014} = 3814 \text{ W/m}^{2}\text{K}$

BC3 Absorber Design : Fast Extraction : Coupled Thermo-Mechanical Analysis

- Explicit transient FE solution
- □ Temp. dependent thermal properties
- □ Temp. dependent constitutive properties
- Failure criteria
 - Max./ Min. Principal Stress
 - Von Mises
 - Column Mohr Equivalent stress

BC3 Absorber Design : Fast Extraction : Pressure Wave Propagation

- Explicit transient FE solution of coupled thermo-mechanical equilibrium equations
- Total stress = hydrostatic stress (determined by EOS) + Deviatoric stress (Determined by material model)

EOS: determines hydrostatic (bulk) behavior of material. Gruneisen EOS defines pressure of compressed material as: $p = \frac{\rho_0 C^2 \mu [1 + (1 - \frac{\gamma_0}{2}) \mu - \frac{b}{2} \mu^2]}{[1 - (S_1 - 1) \mu - S_2 \frac{\mu^2}{\mu + 1} - S_3 \frac{\mu^3}{(\mu + 1)^2}} + (\gamma_0 + b\mu)E$ where, **E**: internal energy **C**: intercept of $u_s - u_p$ curve **S**₁, **S**₂, **S**₃: coefficients of slopes of $u_s - u_p$ curve γ_0 : Gruneisen constant **b**: first order correction to γ_0 $\mu = \frac{1}{V} - 1$ Gruneisen parameters are available for many materials including Graphite

Material Models: those support EOS calculations and temperature dependent constitutive calculations: 015- JOHNSON-COOK PLASTICITY or 011- STEINBERG

BC3 Absorber Design : Fast Extraction : Pressure Wave Propagation Material Property Inputs

	Parameters	Source
Physical properties	Mass density p	SGL*
Thermal Properties	Heat Capacity, Thermal conductivity	SGL*
Elastic, Plastic and Thermo-	Ε, G, α	SGL*
mechanical Constitutive constants	Steinberg/Johnson-cook parameters	-
Equation of State model (Gruneisen) parameters	C, S ₁ , S ₂ , S ₃ , γ ₀ , α	Lawrence Livermore National Laboratory, 1996*
Strength /failure criteria	Maximum Compression, Maximum Pressure	Lawrence Livermore National Laboratory, 1996*
parameters	Max Pr. stress, Min Pr. stress	SGL*

Material: SGL Graphite grade: R6650, grain size: 2-7micron/Cu

*"A thermomechanical analysis of the central column tiles", Report by R. Chavan, CRPP / EPFL - Lausanne, 1998 - 1999

BC3 Absorber Design : Fast Extraction : Pressure Wave Propagation

Numerical Validation of 1D Model in LS Dyna

Heat generation triangular pulse width 100 ns Peak 7.6 x 10^{16} W/m³ Left end of the bar is fixed Convective dissipation at the right end with h=1. T_{inf}=300K Mie-Gruneisen Polynomial form in EOS Material : Cu hence very high |P|

Results agree with 1D Analytical model

But the energy deposition region of the bar (i.e. z=0) is retaining the pressure even after the pulse propagates out of it ?

BC3 Absorber Design : Fast Extraction : Pressure Wave Propagation

Heat deposition -1ms

0.14

0.1

0.02

2D Model Numerical Analysis

Analytical model under formulation. Numerical analysis with 1ms triangular pulse depositing 57kW Explicit time integration : dt = E-6 Coupled thermo-mechanical time step Material Graphite : R6650 Stopped after 17 Hrs (40s duration)

Beam profile 2D Gaussian with sharp Brags peak (740MeV) but flatter (1500MeV)

Radial Discretization

Radial	Sigma level	Annular	Energy
zone (<i>C_i</i>)		Area (dA_i)	Fraction (α_i)
C1	0 - 0.4	$0.16\pi\sigma_x\sigma_y$	0.097
C2	0.4 - 1	$0.84\pi\sigma_x\sigma_y$	0.369
C3	1 - 2	$3\pi\sigma_x\sigma_y$	0.445
C4	2-3	$5\pi\sigma_x\sigma_y$	0.084

Spot size as function of the location along x (μ_x) Critical spot size is minimum of $\sigma_x x \sigma_y$

Axial Discretization

740MeV/u

U²³⁸ ions pulses in graphite (ρ = 1.84 g/cm³).

1500MeV/u

 μ_x 365.5mm σ_x =1.46 cm σ_y =2.32 cm Critical spot size

	Energy density (J/cc)						
		Energy density (J/cc) $dE/dV = (E/dA_i.dz_i).\alpha i.\beta j$					
	Ci \ Aj	A1	A2	A3	A4		
40MeV/u	C1	152.03	192.38	273.80	466.23		
	C2	110.72	140.11	199.41	339.55		
	C3	37.34	47.25	67.25	114.52		
	C4	4.21	5.32	7.58	12.90		

 μ_x 365.5mm σ_x =1.46 cm σ_y =2.32 cm Critical spot size

	Energy density (J/cc)				
		Energy density (J/cc) $dE/dV = (E/dA_i.dz_i).\alpha i.\beta j$			
	<u>Ci \ Aj</u>	A1	A2	A3	
1500MeV/u	C1	169.42	46.74	7.30	
	C2	123.39	34.04	5.32	
	C3	41.62	11.48	1.79	
	C4	4.69	1.29	0.20	

Computationally very expensive : Analysis on process

CSIR-CMERI Dr. Avik Chatterjee Abhijit Mahapatra Amit Kumar

FAIR@GSI Dr. Helmut Weick C.Karagiannis

Letteractions

IFCC-BI

Dr. Subhasis Chattopadhyay

Appendix : Material Consideration

Appendix : Material Property

Source: Manufacturer (SGL)

ρ= 1870 Kg/m^{3.}

E =13.5E+9 Pa

PR =0.25

G =5.4E+9 Pa

2500

2500

Appendix : Material Property (EOS)

Source: Lawrence Livermore National Laboratory, 1996

• Gruneisen EOS parameters:

$$\begin{array}{cccc} \mathbf{C_0} & \mathbf{S_1} & \mathbf{S_2} & \mathbf{S_3} & \gamma_0 & \mathbf{b} \\ 0.39 & 2.16 & 1.54 & -9.43 & 0.24 & 0. \end{array}$$
$$p = \frac{\rho_0 C^2 \mu [1 + \left(1 - \frac{\gamma_0}{2}\right)\mu - \frac{b}{2}\mu^2]}{[1 - (S_1 - 1)\mu - S_2 \frac{\mu^2}{\mu + 1} - S_3 \frac{\mu^3}{(\mu + 1)^2}} + (\gamma_0 + b\mu)E \end{array}$$

where, **E**: internal energy **C**: intercept of $u_s - u_p$ curve S_1, S_2, S_3 : coefficients of slopes of $u_s - u_p$ curve γ_0 : Gruneisen constant **b**: first order correction to γ_0 $\mu = \frac{1}{V} - 1$

- Maximum Compression = 1.45
- Maximum Hugoniot Pressure = 0.46 Mbar

Appendix : Thermo-mechanical Equilibrium equations

$$\sigma_{x,x} + \tau_{xy,y} + \tau_{xz,z} + b_x = \rho \ddot{u}$$

$$\tau_{xy,x} + \sigma_{y,y} + \tau_{yz,z} + b_y = \rho \ddot{v}$$

$$\tau_{zx,x} + \tau_{yz,y} + \sigma_{z,z} + b_z = \rho \ddot{w}$$

$$k_x T_{xx} + k_y T_{yy} + k_z T_{zz} + Q = c \rho \dot{T}$$

$$\{\varepsilon\} = [S]\{\sigma\} + \{\alpha\}T$$

Appendix : Stress wave propagation solution

Dilatational wave	Distortional wave	Wave refle	ction from boundary
$(\lambda + 2\mu)\nabla^2 \Delta = \rho \frac{\partial^2 \Delta}{\partial t^2}$	$\mu \nabla^2 \boldsymbol{\varpi} = \rho \frac{\partial^2 \boldsymbol{\varpi}}{\partial t^2}$		
$\nabla^2 \Delta = \frac{1}{c_1^2} \frac{\partial^2 \Delta}{\partial t^2}$	$\nabla^2 \boldsymbol{\varpi} = \frac{1}{c_2^2} \frac{\partial^2 \Delta}{\partial t^2}$	Soft boundary	
$c_1 = \sqrt{\frac{\left(\lambda + 2\mu\right)}{\rho}}$	$c_2 = \sqrt{\frac{\mu}{\rho}}$		
$\Delta = \nabla u = \varepsilon_x + \varepsilon_y + \varepsilon_z$	$\varpi = \nabla \times u$		
Plane wave solutions		Hard boundary	
Simple Harmonic way	ve solution		
$u = C_1 e^{i(kx + \omega t)} + C_2 e^{-it}$	$(kx-\omega t)$		
• D'Alembert (general)) Solution		
u = f(x + ct) + g(x - ct) +	ct)		\wedge
where, C_1 , C_2 and the form boundary and initial	orms of f and g are obtained al conditions	Low density to High density	, <u> </u>

GIF Source: Pennsylvania State University