Ion Accelerators

Ken Takayama

High Energy Accelerator Research Organization (KEK) Tokyo Institute of Technology

Indo-Japan Accelerator School at IUAC, 2/16-18 2015

	Subject		
1.	Classification of Accelerators		
2.	Brief History		
3.	Energy Frontier Accelerators		
	Intensity Frontier Accelerators		
	Accelerator Complex for Exotic Particles		
	Gigantic Accelerator Complex for Heavy Ion Inertial Fusion		
	Low, Medium Energy Ion Accelerators		
4.	Novel Accelerator for Ions		

Classification of Accelerators

from Induction Accelerators (Springer 2010), K. Takayama and R. Briggs

Historical Evolution of Circular Hadron Accelerators

Operation principle of a Classic Cyclotron

RF oscillator

1931 E.O.Lawrence, the first cyclotron (1939 Nobel P.)

Idea: AC voltage or RF (angular frequency ω) is introduced between the gap of Dee electrodes (Dee itself is hollow) as an accelerating midium.

r: rotation radius, *v*: velocity

Force balance in the radial direction :

$$m\gamma \frac{v^2}{r} = evB_z \rightarrow \frac{r}{v} = \frac{m\gamma}{eB_z}$$

thus, $\omega = \frac{eB_z}{m\gamma}$
 $m\gamma \frac{v^2}{eB_z}$
 $r: \text{Larmor Radius}$
D: High voltage deflector
I: Ion source
B: Exit
Spiral : track of ion

in the non - relativistic limit

 $\omega = const.$ Note: ω does not depend the orbit radius <u>r</u>.

•Once ω and *B* are fixed,

any ions with the same (e/m) can be accelerated in the cyclotron.

Top view

Dee

Dee

Actually constructed cyclotrons

4.5 inch table top cyclotron (1931)
H- ion
Acieved energy: 80 keV,
Accelerating voltage: 1.8 kV

1st Cyclotron

Evolution of Circular Accelerators

 $p \pmod{p}$ (mometum) $\propto B\rho$ (magnetic regity) Possible solution -> Splitting of Magnet Pole

Synchrotron Basic

Acceleration and Confinement in the longitudinal direction

Confinement of Charged Particles with Various Velocity Vector

Particles have various velocity vectors.

Particles of 10¹⁰-10¹² have to be confined and simultaneously accelerated in a real circular accelerator.

Any confinement forces are required.

$$\frac{d}{dt}(m\gamma \cdot v_x) = e \cdot v_s \cdot B_y \longrightarrow F$$

Orbit Coordinate and Betatron Motion

This existence of **field gradients** can give the orbit stability in Betatrons and Synchrorons.

Summary of Forces on a particle in the guiding magnetic fields

Guiding Magnet and Lattice for a Weak Focusing Synchrotron

1st Synchrotron

Inventor: Prof. E.M.McMillan

awarded Nobel Prize (Chemistry) in 1951not for invention of SynchrotronE=340MeV(electron)but for discovery of Neptunium using CyclotronWeak focusing synchrotron constructed in1946

University of California in Berkeley, Radiation Lab. (later LBL)

2nd Largest Weak Focusing Synchrotron

Cosmotron (BNL)

1953-1966 Energy:3GeV Discovery of K-meson, Vector meson

diam'r o'r aller

STREEFEEEEE

Van de Graaff Injector

Weak focusing magnet

From Weak Focusing Synchrotron to Strong Focusing Synchrotron

It was mathematically proved that the **combination of focusing and defocusing magnet** gives the stability of betatron motion, with a big figure of merit <u>in 1950 and 1952</u>, which is analogous to **guiding of light using focusing lens and defocusing lens**.

Inventors of Strong Focusing Principle

Nickolas Christofilos

Greek electronics engineer BNL -> LLNL Pioneer of linear induction accelerator Hartland S. Snyder Co-author of famous paper on Black-Hall with Oppenheimer

Ernest Courant Son of famous Mathematician Courant

Stanley Livingston Pioneer of Cyclotron development with Lawrence Inventor of Separate-function Type Synchrotron: Prof. Toshio Kitagaki (Tohoku University in Japan)

Concept was crucial to realize **Collider**

Synchrotron radiation source.

1 month later from publication of Counrant's paper, Kitagaki proved that the same stability can be warranted even if the quadrupole field components in the combined -type bending magnet are separated.

A Focusing Method for Large Accelerators

T. KITAGAKI Department of Physics, Faculty of Science, Tohoku University, Sendai, Japan (Received December 29, 1952)

FOR the guiding field of synchrotrons, fields providing continuous focusing, 1 > n > 0, have usually been used. Recently, Courant, Livingston, and Snyder' showed that fields which consist of periodic focusing and defocusing regions, $n_1 = -n_2 \gg 1$, have strong focusing properties. We have tried another application of the periodic field. The magnet is divided into guiding magnets and focusing magnets, and the latter are placed in the linear portion of the orbit. Quadrupole or solenoid magnets may be used as focusing magnets.

(A) The stability condition formulated by Courant *et al.* now involves the factor ξ , the ratio of the length of the focusing magnet to π/M , where M = the number of pairs in 2π . Let p_1^2 and p_2^2 be the coefficients of the focusing field in Fig. 1(a). The stability conditionis as follows:

 $|\eta| < 1,$

$$\eta = \cos \frac{\pi}{M} \xi p_1 \cos \frac{\pi}{M} \xi p_2 + \sin \frac{\pi}{M} \xi p_2 \left[\left\{ \frac{\pi}{M} (1-\xi) \right\}^2 p_1 p_2 - \frac{p_1^2 + p_2^2}{p_1 p_2} \right] \frac{1}{2} - \frac{\pi}{M} (1-\xi) \left\{ p_1 \sin \frac{\pi}{M} \xi p_1 \cos \frac{\pi}{M} \xi p_2 + p_2 \cos \frac{\pi}{M} \xi p_1 \sin \frac{\pi}{M} \xi p_2 \right\}.$$
(1)

Figure 1(b) shows the first stable region.

, The quadrupole field shown in Fig. 2 increases linearly with x near the center. This field provides focusing and defocusing force in the x and z directions, respectively, and the forces are given by the equivalent n_{eq} and $-n_{eq}$, respectively, where,

$$n_{eq} = (H'/H_0)R.$$
 (2)

R = the radius of the orbit in the guiding field, $H_0 =$ the guiding

Strong Focusing Synchrotron (1): Separate-function type

Combined function magnet

Bending magnet with a function of bending

Quadrupole magnet with functions of focusing and defocusing

Strong Focusing Synchrotron (2): Lattice

New Injector (FNAL)

50 km west Chicago Tevatron accel. tunnel **B0** Detector **Tevatron** Circumference 6 km 1 TeV Energy Booster Antiproton 4.5 Tesla Supel conducting accumulator magenet Main Injector

Relativistic Heavy Ion Collider (BNL)

KEK Tsukuba Campus

High Intensity Proton Driver (J-PARC, KEK Tokai Capus)

LHC (CERN)

2 in 1 8.3T superconducting magnet

JLE

Large Hadron Collider (LHC)

Experimental facility (ATLAS) conducted by Japan *et al.*

7 TeV p x 7 TeV p collider circumference: 27 km run since 2009

Vaccum vessel Thermal shield

Path of liquid He

Iron york

TLEP and Super High Energy LHC in the same tunnel

Circumference of ring: 80 km 350 GeV e⁺ x 350 GeV e⁻ Collider 100 TeV p x 100 TeV p Collider Luminosity: 5 x 10^{34} cm⁻²sec⁻¹ 2x10⁶ Higgs /5 years

International design team has started their tasks.

Neutrino Factory: CERN Scenario

Beta Beam scenario EUROnu

Heavy Ion Inertial Fusion Drivers

Drivers to obtain Swift Heavy Ions for Various Applications

1. ES Accelerator (1931-) 2. RF Lina

- 3. Cyclotron (1931-)
- 4. Synchrotron (1945-)

Van de Graaff,1931

Univ. of Tsukuba, Hitachi

	Туре	Advantage	Disadvantage
Existing driver loped driver	Electrostatic Accelerator (Tandem at Orsay, IUAC)	Any ion species	Energy limited due to discharge
	RF Linac	A lot of experience Easy beam extraction	A/Q limited Expensive for high energy
	RF Cyclotron (low, medium energy)	DC beam available Wide range of ion species	A/Q limited
	RF Synchrotron (medium energy)	Extremely high energy obtainable	A/Q limited Large scale injector required Expensive
	 Induction Synchrotron (Digital Accelerator) Induction Microtron 	Any ion species A/Q no limited (e.g. U ¹⁺) Large scale injector not required	Beam intensity limited (due to low energy injection)

From Betatron to Induction Synchrotron / Cyclotron/Microtron

Difference between RF Synchrotron and Induction Synchrotron

Demonstration of two types of Induction Synchrotron

Heart of Digital Accelerator : Evolutional Induction Accelerator System

Complete Demonstration of the Induction Synchrotron Concept (2006, March)

KEK Digital Accelerator (Fast Cycling Induction Synchrotron)

Ion Source (present and near future)

< 109

< 70 MeV/au

Xe, Al, Fe, Cu, Ag, Au

Present ion source (ECRIS) for Gaseous ions

Laser Ablation Ion Source

LAIS for full stripped C and metal ions

R.S.I. 85, 02B9225 (2014)

More Realistic Operational Layout of KEK Digital Accelerator

Acceleration of A/Q=4 lons

Flexible Beam Handling in Digital Accelerator

Giant Cluster Ions as the 4th Generation of High Energy Projectile Particle

Extremely high energy density in a target

A 300 MeV/u Ar beam is penetrating into a Kr-crystal [2

Comparison between Induction Synchrotron and its Brothers

Integrated acceleration voltage in a circular ring, which is a parameter being compared with the acceleration voltage of a single-end electrostatic accelerator:

$$V[\text{volt}] = \left(\frac{A}{Q}\right) \cdot \frac{mc^2}{e} \cdot \left(\sqrt{1 + \left[\left(\frac{Q}{A}\right) \cdot \left(\frac{e}{mc^2}\right) \cdot c \cdot B\rho\right]^2} - 1\right]$$

In order to increase *V*, it is a unique solution to increase

Magnetic Rigidity.

A: mass number of cluster ion, *Q*: charge-state *B*: flux density of guiding magnet, ρ : bending radius

Accelerator	8	/	Merit/Demerit
Induction synchrotron	Increasing is in principle possible, introducing S.C. magnet of 8.5 Tesla	fixed	 Low injection fields of S.C. mag. are not stable. Large aperture required at injection stage does not seem to allow the extremely high field S.C. magnet.
Induction cyclotron (*)	fixed (~ 1.5 Tesla)	Its increasing is inherent property	 Acceleration method there is completely same as that in the induction synchrotron. Large size induction core with race-track shape is required. Its assembling is not easy and it's expensive.
Induction microtron	fixed(~ 1.5 Tesla)	Its increasing is inherent property	 Induction acceleration cell employing a toroidal- shape core is completely same as that for induction synchrotron. Acceleration method there is completely same as that in the induction synchrotron.

* K.Takayama, T. Adachi, H. Tsutsui, W. Jiang, and Y.Oguri, "Induction Sector Cyclotron for Cluster Ions", *Proceedings of Cyclotron2010*, 331-333 (2011).

Brief History of Microtron

1944 Proposal of Electron Cyclotron by V.I.Veksler (former USSR)
1946-47 Proposals of Electron Microtron by J. Itoh and D. Kobayashi, J.S.Shwinger, L.I.Shiff

Hereafter The early microtron was constructed in Canada.

(Typical example : that of RRCAT)

1958 Reviewing paper by A. Roberts Annals of Physics 4, 115-165 (1958).

- 1960-70 Various microtrons had been constructed and dedicated to Nuclear Physics in world wide.
- 1990- Industries provide a small size microtron for synchrotron radiation sources and constructed as an injector to it.

Two full text books describing electron microtrons are available now.

from Wikipedia

Existing biggest one: 1.6 GeV e- Microtron of Mainz University

Induction Microtron for Cluster ions and Super heavy micro particles

How can we guarantee the orbit stability from injection to extraction?

Induction Microtron=Induction Synchrotron with adiabatically varying orbit length

Introducing of Inversed Fields Strip

Introducing Field Gradient in the Bending Magnet

Orbit in Bending Magnet with Uniform Gradient

Typical Lattice Functions of 1 Quadrant

Scenario for Induction Acceleration and Confinement and their Control Procedure

Summary

Conventional Circular Hadron Accelerators have achieved a level of state of art.

- ■Their scale-up is relatively easy.
- New trend is going to begin, adding further flexibility to the existing beam acceleration and handling technology

Induction Micotron may be indispensable to accelerate stable giant cluster ions such as C-60 or Si-100 to high energy. Giant cluster ions may be the 4th generation of accelerating particle following e-, proton, and heavy ion.