Heavy Ion Superconducting Accelerators: International Scenario

п

Prof. R. G. Pillay Pelletron Linac Facility, Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai

Heavy Ion Accelerators

Configuration

- For low energy Nuclear Physics
	- Physics close to the Coulomb Barrier
	- E/A ~ 5-20 MeV/u \rightarrow v ~ 10-20 % c
- For H & He like ions for Atomic Physics
- Accelerating elements (SLINAC)
	- Independently Phased Superconducting cavities
	- β (v/c) ~ 0.05, 0.10, 0.20
- Pre-accelerator
	- Tandem, RFQ, SRFQ, DTL, ultra-low beta S-Cavities

Joint TIFR – BARC Facility

Specifications

Heavy ions upto A~80 E/A~5-12 MeV

Energy gain 14MV/q Module 7 nos Resonators 28 nos

Bunch width ~200 ps Beam Intensity 0.1-10 pnA

Phase I commissioned on September 22nd , 2002 Phase II commissioned on July 9th , 2007 LINAC dedicated to users on Nov. 28th , 2007

Quarter Wave Resonators

Material OFHC Cu Superconducting surface 2 μ m thick. Pb **Frequency 150 MHz Cavity Length 64 cm Cavity Diameter** 20 cm **Optimum velocity** $\beta=0.1$ **Design goal** 2.5 to 3 MV/m

 @ 6 to 9 Watts

Nb QWR cavities development IUAC New Delhi

IUAC Linac module with 8 QWRs

Superbuncher cavity

Before Plating **After Lead Plating**

Pre-accelerator inter-digital ultra-low beta cavities Main LINAC bulk-Nb Split-loop resonators

Nb Sputtered QWR LNL, Legnaro

Rounded surfaces for better deposition

Heavy Ion Accelerators (Superconducting LINAC)

Existing Facilities (partial listing) USA: ATLAS ANL Canada: ISAC, TRIUMF Europe: ALPI, INFN-LNL ISOLDE, CERN Japan: JAERI, Tokai India: IUAC, New Delhi TIFR, Mumbai

New Projects for Heavy Ions & RIBs Israel, China, Spain, France, USA, India, …

Design Considerations

- Efficiency of acceleration
	- Operating point $(E_{\text{acc}}$ vs $P_{\text{diss}})$
	- High Shunt Impedance
- RF Control
	- Stability (amplitude & phase)
	- Low Stored Energy
- Beam Dynamics Phase Space
	- Longitudinal & Transverse evolution
	- Phase matching between sections
	- Bunching
	- Phase setting of Superconducting cavities
	- Pre-accelerator

TIFR-BARC Accelerator Facility

Pelletron accelerator

- $E/A \sim 3-7$ MeV, $\beta \sim 0.08 0.12$
- Heavy ions reactions upto $A \sim 40$

Superconducting Linac booster

- $E/A \sim 5-12$ MeV, $\beta \sim 0.10-0.15$
- Heavy ions reactions upto $A \sim 80$ (limited by pre-accelerator)

- Beam intensity: 0.1 -10 pnA (10^{9-11} p/s) (limited by ion source)

Beam Transport in LINAC

- Longitudinal Phase Space
	- bunching
	- matching and stability
- Transverse Phase Space
	- periodic focusing
- Magnetic Bend
	- achromatic and isochronous

σ(ps) as a function of dimensionless scaled variable x=ωLE_B/2βcE. The solid line is the fit to the data.

 E and β are the energy and velocity of the incident beam,

EB and ^w *are the amplitude of energy gain and angular frequency.*

The electron spectrum observed with MSP

If the low energy buncher beam width is not sufficiently narrow, then at the superbuncher the incident beam experiences the nonlinear part of the sinusoidal RF field and this results in a non-gaussian peak shape.

Time

Fig. 1: Longitudinal phase space after superbuncher with DC-beam

Evolution of longitudinal phase space

- Optimization of Beam quality at target transmission, energy spread and time structure
- Pre-compute synchronous phase settings (Φ_{res}) for 2^N configurations measured resonator field values time focusing (-20°) or time de-focusing $(+20^{\circ})$
- For any given set of Φ_{res} ,

 Φ_{REF} (k+1) = Φ_{REF} (k) + $\Delta\Phi_0$ (k+1, k) – $\Delta\Phi_{res}$ (k+1,k) – $\omega(t_{k+1} - t_k)$

Evolution of longitudinal phase space

Final configuration corresponding to an optimal phase space at target determined by measurement of the transmission and the time structure.

Timing Detector (1" Ba F_2) @LIN1 : entrance of Phase I @LIN4 : entrance of Phase II @LIN7 : after switching magnet @target position

Cavity in-beam performance

• Frequency Stability

Mechanical design vs Cooling Mechanical vibrational modes Radiation Pressure induced Liquid Helium boiling induced

- Limits the in-beam performance Determines RF power requirements Determines cryogenic requirements
- RF Coupler, pickup and Frequency tuner

Full LINAC Test (July 07) 28 Si 13+

Cryogenics

Module Cryostat

Top view of the module

40 ltr. liq. He vessel 60 ltr. liq. N² vessel

Cryogenics for the Linac

Linde TCF50S

Al Plate Fin Heat Exchangers Two stage Turbine Expansion Engines Two stage JT Expansion 250 KW Screw Compressor, 62 g/s Refrigeration at 4.5 K, Liquification Without LN_2 and 300 W, $\,$ 50 I/hr With LN₂pre-cooling 450 W, 120 l/hr

- TCF50S commissioned in 1998
	- Two turbo expanders
	- 50 litres/hour; 300 Watts $@$ 4.5K w/o LN₂
	- Compressor 200 kW; 13 Bara; 62 g/s
- ▶ 1st stage Turbine & Turbine housing changed
- **≻2nd stage Turbine modified**
- **>New Compressor installed**
	- 250 kW; 13 Bara; 80 g/s
	- 80 litres/hour; ~450 Watts

Cold Box Opened for Modifications

New Turbine Housing Installed

Junction Box

Inside View of Junction Box

The entire cryogenic distribution system was fabricated and assembled on-site.

- LHe valves with ac motor actuators and position read-back
- Electro-pneumatic valves for $LN₂$ batch filling
- Tri-axial transfer tube ports

- WEKA make cryogenic valves for LHe
- WEKA make Transfer tube Bayonet for LHe
- WEKA make Cryogenic check valves
- Indigenously developed valves and bayonet for $LN₂$

Trunk Line

- Vacuum insulated trunk line 100mm dia with four tubes
- Made in separate sections with kennol fittings supported by Glass fibre loaded teflon spacers
- ~100mW/m

Beam lines & Diagnostic elements

LINAC & Experimental Beam Halls

Hall 1

- Condensed Matter Physics (7 T Magnet) & Atomic, Molecular & Cluster Physics
- General Purpose Scattering Chamber
- High energy gamma ray & neutron wall

Hall 2

- General Purpose/ Irradiation line
- HPGe Spectrometer (INGA)
- Charged particle ball
- **M**omentum **A**chromat for **R**adioactive **I**on **E**xperiments

Beam Transport to Experiments

- Mid-Bend system
	- Achromatic & Isochronous
	- Beam Loss (85-90% transmission)
- Switching Magnets
	- Dispersive
	- Beam Loss (85-90% transmission)
- Beam Diagnostics
	- X-Y slits
	- Beam Profile monitors (rotating wire)
	- Faraday Cups
	- Timing detectors (BaF $_2$, MSP & Diamond)

Beam line components

Hall I

Hall II

Faraday cup control station

- **Design Concept**
- **1) FC Current read-back on PC with auto gain selection**
- **2) 8 Local FC inputs**
- **Parameters controlled & monitored**
- **1) Selection of desired FC and its signal**
- **2) IN/OUT operation of selected FC**
- **3) A/D conversion of beam current using 12-bit ADC**
- **4) Pre-amplifier auto-gain selection (x1 & x3)**
- **5) PC Interface via RS-232**

Beam Profile Monitor (BPM)

- **▶ Diagnostic tool** (concept design based on Danfysik BPM)
- Contains an *elliptical shaped wire*
- \triangleright Scans beam in X & Y axis
- \triangleright A 3 phase DC motor rotates this wire
- Developed at TIFR Central Workshop
- \triangleright There are more than 20 BPM's in the beam line

BPM fabricated @ TIFR

Design drawing

Beam profiles as seen on the oscilloscope

Position 1 : Wire loop appears as a circle

Position 2 : Wire loop collapses to a vertical line giving rise to the X profile.

Position 3 : Wire loop expands to a circle again.

Position 4 : Wire loop collapses to a horizontal line giving rise to the Y profile.

Micro-sphere Plate detector for timing

Development of Beamline components & Diagnostic elements

Instrumentation & Control system

Instrumentation for the Heavy ion LINAC

Cryogenic monitor & control

RF Cavities

RF phase & amplitude control Beam Transport & Diagnostic Beam Lines

Vacuum

Cryogenic control station Block diagram

Based on a Self-excited Loop with Amplitude and Phase corrections Intrinsic resonator bandwidth ~1Hz @ 150MHz Cavity resonant frequency variations ~±25Hz Field level set by limiter and variable coupler

RF Electronics and LINAC Control System

- **EXECUTE: Resonator controller and CAMAC system**
	- *In house development using Indigenous/easily available RF modules*
	- *150 Watts, 150 MHz RF Power Amplifiers*
- LINUX based Operating system with JAVA
- Web based distributed control system (master + local stations)

150 Watt, 150 MHz RF Amplifiers

RF distribution and control in the PLF

New Developments

Using under-sampling

 $(13/4)^*2\pi=\pi/2$

Under sample with 4/13 of reference frequency (150 MHz) Reconstruction – DAC at 8/13 of reference frequency

Digital RF Control of the Linac

- A digital implementation
	- Inherently free from the limitations of analog implementation:
		- DC off-sets
		- Drift
		- Gain Imbalance
		- Impedance mismatch, etc.
	- Besides it has:
		- Flexibility
		- Ability to execute complex algorithms
- With the availability of fast, high resolution data-converters and DSP/FPGA's, modern digital hardware is able to satisfy the requirements of RF control applications

We are developing RF control based on digital techniques

Typical Architecture of Digital RF Control:

Three sub-systems:

Digital Card: ADC, DAC, FPGA, Memory, Modulator, cPCI interface

Clock Card: Clock signals for ADC, DAC. FPGA, Down Converter

Mixer Board: Down Converter, **Filters**

Digital LLRF Control System

A proposed scheme for digital RF control of LEB system

Critical components of LINAC booster have been designed, developed and fabricated indigenously.

Thank you

Some Milestones …

First LINAC experiment begins on 16th April 2003

Dedicated to Users on November 28th, 2007

Superconducting Cyclotron VECC Kolkata

Low Energy RIB VECC Kolkata

Nb QWR cavities development IUAC New Delhi

IUAC Linac module with 8 QWRs